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Abstract
A magnetic field not only changes the electronic states in a carbon nanotube, but also affects the
atomic displacement fluctuation through the electron–phonon interaction. In the presence of a
magnetic field, the fluctuation may be related to the magnetism due to the phonon excitations.
In this work, we calculate the atomic displacement fluctuation for the nanotubes at different
magnetic field strengths, and the magnetic moment per lattice point generated by the phonon
excitations. Both the existence of the minimum fluctuation and the change of the magnetic
moment direction indicate that there is a quantum phase transition of phonons.

(Some figures in this article are in colour only in the electronic version)

The phonon spectrum and the electron–phonon scattering in
carbon nanotubes have been intensively investigated [1–7].
However, little attention was paid to the effect of the external
magnetic field on the phonons. It is known that a high
magnetic field may lead to a metal–insulator transition [8–10].
If the high magnetic field is applied normal to the carbon
nanotube axis, it can significantly modify the electronic energy
spectrum and convert the electronic properties of the nanotube.
The change of the electronic states would affect the lattice
vibrations through the electron–phonon interaction. In order
to clarify this problem, it is necessary to study the effect
of the magnetic field on the atomic displacement fluctuation,
for atomic displacement fluctuation is not only related to the
phonons themselves, but also related to the electron–phonon
interaction; larger fluctuation means the stronger electron–
phonon interaction at a particular temperature and vice versa.
On the other hand, when the atomic displacement fluctuation
takes its minimum value, the phonon system is most stable
for when the fluctuation is proportional to the mean phonon
energy.

We adopt a single-orbital nearest-neighbour tight-
binding model to describe the Hamiltonian, and use a
modified functional integral approach to calculate the atomic
displacement fluctuation [11–16]. In the Hamiltonian, the
first-order term of atomic displacement in the expansion
of the exchange integral represents the electron–phonon
interaction. In the calculation of the generating function
(partition function), the integral variables corresponding to the
electrons are represented by the row matrix and the column
matrix composed of the creation operators and the annihilation

operators in the Wannier representation. We apply the classical
string concept to calculate the functional integral over the
atomic displacement variables [17].

In the next section, we first of all derive the generation
function, and then calculate the atomic displacement
fluctuation as well as the magnetic moment generated by
phonon excitations. Finally we give a conclusion.

The magnetic field applied normal to the nanotube axis is
described by the vector potential �A = −Bz�ey, where B is the
magnetic field strength, z the coordinate along the nanotube
axis, and �ey the unit vector in the y-axis direction. In practice,
only when the magnetic field is along this direction will a
significant Aharonov–Bohm effect occur. The structure of
the nanotube with armchair ends is shown in figure 1. There
are two types of atom, denoted by Am,n and Bm,n . Here
m is the row index along the tube axis and n the periodic
index of atomic arrangement along the circumference. The
nanotube is assumed to be composed of M rows along the
axis and N periods along the circumstance. Then the diameter
of the nanotube is d = (

√
3 + 2)Na/π , while the length is

l = √
3Ma/2. In what follows, we use N and M to denote

the diameter and the length, respectively. The Peierls phase
due to the application of the magnetic field is incorporated
in the exchange integral defined as [18, 19] Vm,n,i;m′,n′, j →
Vm,n,i;m′,n′, j exp( ie

h̄c

∫ m′,n′, j
m,n,i

�A · d�l), where e is the electronic
charge, c the light speed in the vacuum, and h̄ the Planck
constant divided by 2π . In the Wannier representation, the
Hamiltonian of the system is

H = �+
m,n Em,n�m,n, (1)
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Figure 1. The atomic arrangement of the nanotube with armchair
ends. The rectangle with the dashed line is a larger unit cell used as
calculating the atomic displacement fluctuation of nanotubes. The
magnetic field is applied normal to the nanotube axis.

where Em,n is a 7 × 7 matrix, its non-zero elements are

(Em,n)1,1 = 3(Em,n)2,2 = 2

1 + δm,1
(Em,n)3,3

= 2

1 + δm,M−2
(Em,n)4,4 = 2

1 + δm,M−2
(Em,n)5,5

= 2

1 + δm,1
(Em,n)6,6 = 3

2
(Em,n)7,7 = ε0 (2)

(Em,n)1,2 = (Em,n)
∗
2,1

= 1
4 [V0 + �α · (�um+1,n,B − �um+1,n,A)]eiφ1

m,n , (3)

(Em,n)1,3 = (Em,n)
∗
3,1

= 1
4 [V0 + �α · (�um,n,B − �um,n,A)]eiφ2

m,n , (4)

(Em,n)1,4 = (Em,n)
∗
4,1

= 1
4 [V0 + �α · (�um+1,n,A − �um+2,n,B)]eiφ3

m,n , (5)

(Em,n)3,6 = (Em,n)
∗
6,3

= 1
4 [V0 + �α · (�um,n,B − �um,n,A)]eiφ1

m−1,n , (6)

(Em,n)4,5 = (Em,n)
∗
5,4

= 1
4δm,M−2[V0 + �α · (�um+2,n,B − �um+2,n,A)]eiφ1

m+1,n , (7)

(Em,n)5,7 = (Em,n)
∗
7,5

= 1
4 [V0 + �α · (�um+2,n,A − �um+1,n−1,B)]eiφ4

m,n , (8)

(Em,n)6,7 = (Em,n)
∗
7,6

= 1
4 [V0 + �α · (�um,n,A − �um+1,n−1,B)]eiφ5

m,n , (9)

and other elements are all zeros, where

φ1
m,n = 2mγ cos

(
π

N

∣
∣
∣
∣sin

(

m
π

2

)∣
∣
∣
∣

+ 2π(n − 1)

N
− π

3N

)

sin

(
π

3N

)

, (10)

φ2
m,n = γ

[
6N

π
sin

(
π

N

(

2n − 7

6

))

× sin

(
π

N

(
1

2

(

−1

)m

− 1

3

))

− (m − 3 + 3(−1)m)

× sin

(
π

N

(∣
∣
∣
∣sin

(

m
π

2

)∣
∣
∣
∣ + 2n − 2

))

+ (m − 1) sin

(
π

N

(∣
∣
∣
∣cos

(

m
π

2

)∣
∣
∣
∣ + 2n − 4

3

))]

, (11)

φ3
m,n = γ

[
6N

π
sin

(
π

N

(

2n − 7

6

))

× sin

(
π

N

(
1

2

(

−1

)m

− 1

3

))

− (m − 2 + 3(−1)m)

× sin

(
π

N

(∣
∣
∣
∣cos

(

m
π

2

)∣
∣
∣
∣ + 2n − 4

3

))

+ m sin

(
π

N

(∣
∣
∣
∣sin

(

m
π

2

)∣
∣
∣
∣ + 2n − 2

))]

, (12)

φ4
m,n = γ

[
6N

π
sin

(
π

N

(

2n − 13

6

))

× sin

(
π

N

(
1

2

(

−1

)m

− 2

3

))

+ (m + 4 − 3(−1)m)

× sin

(
π

N

(∣
∣
∣
∣cos

(

m
π

2

)∣
∣
∣
∣ + 2n − 2

))

− m sin

(
π

N

(∣
∣
∣
∣sin

(

m
π

2

)∣
∣
∣
∣ + 2n − 10

3

))]

, (13)

φ5
m,n = γ

[
6N

π
sin

(
π

N

(

2n − 13

6

))

× sin

(
π

N

(
1

2

(

−1

)m

− 2

3

))

+ (m + 3 − 3(−1)m)

× sin

(
π

N

(∣
∣
∣
∣sin

(

m
π

2

)∣
∣
∣
∣ + 2n − 10

3

))

− (m − 1) sin

(
π

N

(∣
∣
∣
∣cos

(

m
π

2

)∣
∣
∣
∣ + 2n − 2

))]

, (14)

and

γ = 3
√

3eB Na2

4π h̄c
, (15)

where ε0 is the free atomic energy, �um,n,i (i = A, B) the
atomic displacement, N the total period number along the
circumstance, and a the atomic separation.

The partition function of the system is

Z =
∏

m,n,i

D�∗
m,n D�m,n D�um,n,i

× e− ∫ β

0 dτ [�∗
m,n(∂τ−μ+Em,n)�m,n+∑

i
1
2 Mc((∂τ �um,n,i )

2+(ωpσi �um,n,i )
2)],

(16)

where β = 1/(kT ), with k the Boltzmann constant, T the
temperature; μ is the electronic chemical potential, Mc is the
atomic mass, ωp is the phonon frequency, and σi (i = A, B)

is the auxiliary coefficient. The functional integral over the
electronic variables is calculated using the Grassmann algebra
rules [11–15], and the functional integral over the displacement
variables is calculated using the classical string concept [17].
On the basis of the partition, we obtain the atomic displacement

2
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Figure 2. The atomic displacement fluctuation versus the magnetic
field strength for the nanotube with the length M = 900 and the three
different diameters N = 5 (triangle), N = 10 (square), and N = 15
(circle) at temperature 4.2 K.

fluctuation per lattice point

(�u)2 = u2 − ū2 = u2 = − 2

Nc Mcω2
pβ

∂

∂σA
ln Z∣

∣σA=1

σB=1

= h̄

Mcωp

(

1 + 2

eβh̄ωp − 1

)

+ α2

196M2
c ω4

p Nc

×
∑

m,n

[cos(φ2
m−1,n) + cos(φ3

m−1,n)

+ cos(φ4
m−2,n) + cos(φ5

m,n)

− (2 + δm,M ) cos(φ1
m−1,n)]2(1+eβ(ε

m,n
eff −μ))−1, (17)

where

ε
m,n
eff = ε0

7
(4 + δm,1 + δm,M) + V0

14
[cos(φ1

m,n)

+ cos(φ2
m,n) + cos(φ3

m,n) + cos(φ4
m,n)

+ cos(φ5
m,n) + (1 + δm,M) cos(φ1

m−1,n)]
− α2

392Mcω2
p

{[cos(φ2
m−1,n)

+ cos(φ3
m−1,n) + cos(φ4

m−2,n) + cos(φ5
m,n)

− (2 + δm,M ) cos(φ1
m−1,n)]2

+ [cos(φ2
m,n) + cos(φ3

m−2,n)

+ cos(φ4
m−1,n+1) + cos(φ5

m−1,n+1)

− (2 + δm,M ) cos(φ1
m−1,n)]2}, (18)

is the effective energy of single electron, and Nc = M × N .
In equation (15), the first term represents the fluctuation due
to the lattices themselves, and the second term represents the
fluctuation led by the electron–phonon interaction. For the
phase φi

m,n (i = 1, 2, 3, 4, 5) proportional to the magnetic field
strength and the fluctuation related to the phase, the magnetic
field can effectively tune the fluctuation. In order to make the
phase vary obviously, a higher magnetic field is required.

In our numerical calculation, the material parameters are
chosen as ε0 − μ = 0.0 eV, V0 = 2.50 eV, α = 6.31 eV Å

−1
,

and ωp = 2.72 × 1014 s−1 [20]. Figure 2 shows the curves
of the atomic displacement fluctuation versus the magnetic

19

Figure 3. The atomic displacement fluctuation versus the magnetic
field strength for the nanotubes with the diameter N = 5, and the
three different lengths N = 700 (circle), N = 800 (square), and
N = 900 (triangle) at temperature 4.2 K.

field strength corresponding to the tube length M = 900, and
three different tube diameters N = 5 (triangle), N = 10
(square), and N = 15 (circle) at temperature 4.2 K. The
curves show that there are the minimum values for the atomic
displacement fluctuations changing with the magnetic field.
The minimum fluctuation is observed at B = 26 T for the
nanotube with the diameter N = 5, and its value decreases
with the nanotube diameter decreasing; it is independent of
the nanotube length, as shown in figure 3. The magnetic field
strength corresponding to the minimum fluctuation decreases
with increasing tube diameter. Although the change of
the fluctuation amplitude is very small, it reflects that the
vibrational modes of the phonons undergo a transition in the
vicinity of the minimum fluctuation. On either side of the
minimum point, there are two different phonon phases. It is
known that the phonon energy is proportional to the atomic
displacement fluctuation, namely Ep = Mcω

2
p(�u)2/4. When

the fluctuation takes its minimum value, the mean phonon
energy is lowest.

We define the magnetic moment generated by the phonon
excitations:

μ̄ = −∂ Ep/∂ B = η̄μB, (19)

where μB is the Bohr magneton. We observe that in the vicinity
of the minimum fluctuation there is a change of the magnetic
moment sign, as shown in figures 4 and 5, The phonon system
may undergo a transition from the paramagnetic phase to the
diamagnetic phase or the inverse process. For the nanotube
with the diameter N = 5 and the length M = 900, the
maximum magnetic moment is 19.7μB per lattice point at
B = 12 T and the minimum one is −14.6μB per lattice
point at B = 40 T. Such a large change of the magnetic
moment shows that the externally magnetic field can induce the
observable phonon magnetic effect as well as the phonon phase
transition. Figure 4 shows the curves of the magnetic moment
generated by the phonon excitations versus the magnetic field
strength corresponding to the tube length M = 900, and the
three different tube diameters N = 5 (triangle), N = 10
(square), and N = 15 (circle) at temperature 4.2 K. We can
see that when the nanotube length is taken at a definite value,

3
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Figure 4. The effective magnetic moment versus the magnetic field
strength for the nanotubes with the length M = 900, and the three
different diameters N = 5 (triangle), N = 10 (square), and N = 15
(circle) at temperature 4.2 K.

–20
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0
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Figure 5. The magnetic moment versus the magnetic field strength
for the nanotubes with the diameter N = 5, and the three different
lengths N = 700 (circle), N = 800 (square), and N = 900 (triangle)
at temperature 4.2 K.

the critical magnetic field of the generating phonon phase
transition decreases with the increasing tube diameter. The
critical magnetic field is also related to the nanotube length,
as shown in figure 5. The longer the nanotube is, the lower
the critical magnetic field will be. Our numerical calculations
indicate that the point of minimum fluctuation basically does
not change its position as the temperature increases. This
shows that the phonon phase transition is a quantum phase
transition induced by the magnetic field.

It is known that the phonons have various vibrational
modes. Now the phonon magnetism shows that besides the
intrinsic vibration modes of phonons, much more complicated
modes may be induced by external magnetic fields in the
carbon nanotubes. It should be pointed out that it is just due
to the particular cylindrical geometry of the nanotubes that
the electrons move along a closed circumference orbital and
generate the induced magnetism. Also it is just due to this
structure that the phonons generate the induced magnetism

through the electron–phonon interaction. Now that the atomic
displacement fluctuation is related to the electron–phonon
interaction, the minimum fluctuation should correspond to
weaker electron–phonon scattering. Thus it is expected that
there is minimum resistivity if the system is in a state of
minimum atomic displacement fluctuation. When the external
magnetic field is weaker, this effect is too weak to be observed.
However, when the external field is strong enough, this effect
cannot be disregarded.

In conclusion, we have calculated the atomic displacement
fluctuation as well as the magnetic moment of the phonons for
nanotubes using a modified functional integral method. The
calculation results exhibit that there is the minimum value for
the fluctuation. From the point of view of the magnetization
due to the phonon excitations, there is a quantum phase
transition from the paramagnetic phase to the diamagnetic
phase in the vicinity of the minimum fluctuation point. The
critical magnetic field strength for achieving the phonon
quantum phase transition falls within the current experimental
capability range.
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